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SUMMARY.

Motivated by a study of human papillomavirus infection in women, we present a Bayesian

binomial regression analysis in which the response is subject to an unconstrained misclassification process.
Our iterative approach provides inferences for the parameters that describe the relationships of the covariates
with the response and for the misclassification probabilities. Furthermore, our approach applies to any
meaningful generalized linear model, making model selection possible. Finally, it is straightforward to extend

it to multinomial settings.
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1. Introduction

Currently the analysis of binary response data is still dom-
inated by the classical approach under which inferences are
based on asymptotic theory. However, the Bayesian literature
on this topic and related ones is steadily growing. See, for
example, Dey, Ghosh, and Mallick (2000). Most importantly,
the greatest contribution to this increasing ability to deal with
more-complex problems and models is the continuous devel-
opment of computational tools, in particular those based on
Monte Carlo methods. Under the Bayesian paradigm it is then
natural that the treatment of more problematic cases, such
as misclassification, incomplete data, or measurement errors,
would receive increasing attention. See, for instance, Geng and
Asano (1989), Evans et al. (1996), Mendoza-Blanco, Tu, and
Iyengar (1996), and Rekaya, Weigel, and Gianola (2001) for
different approaches to misclassified categorical data under
several sampling schemes. Soares and Paulino (2001) present
an analysis of incomplete categorical data under informative
censoring and Thiirigen et al. (2000) offer a review of methods
for measurement errors in the covariates.

Motivation for this work comes from data gathered in
an ongoing study of human papillomavirus (HPV) infection
at the University of California-San Francisco (UCSF) (see
Moscicki et al. (2001)). The purpose of the investigation is
to examine the association of several potential risk factors
with HPV cervical infection among females who tested nega-
tive at entry into the study. The study screened 104 women
aged 13 to 21 years who attended family planning clinics in
the San Francisco Bay Area; it recorded for each woman her
infection status at the end of the study (HPVS) by testing for
HPV DNA in cervical samples, whether she had a history of
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vulvar warts (VW), whether she had any new sexual partner
in the last two months at baseline (NSP), and whether she
had an history of herpes simplex (HS). The median follow-up
time was 26 months for those women who remained HPV-
negative.

HPV is really a family of viruses responsible for various ep-
ithelial lesions of which over 90 subtypes have been described.
From those, around 30 subtypes have a clear preference for
the genital tissues and certain ones are commonly associated
with cervical cancer. Since any test for HPV infection is lim-
ited to one subtype or a group of subtypes, it will miss a cer-
tain number of infections and, therefore, the response variable
HPVS is bound to be affected by misclassification, producing
some false negative results. Although less probable, false posi-
tive results are also possible due to sample contamination and
other reasons associated with laboratory work. The definition
of initial negative results was made using a conservative cri-
terion: only those from the cohort who at baseline and first
follow-up had negative results were included.

In this work, we present a fully Bayesian analysis of bino-
mial regression data with a misclassified response and error-
free covariates. In Section 2, the problem is described, along
with an informative misclassification model. Section 3 focuses
on the use of generalized linear models to analyze the associa-
tion of the response with the covariates, embodying the ideas
found in Bedrick, Christensen, and Johnson (1996) on prior
specification. Section 4 discusses the use of data augmenta-
tion and other computational issues. In Section 5, the HPV
data above mentioned serve as an illustration of the analy-
sis developed and, finally, Section 6 contains some concluding
remarks.
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2. Model for the Misclassified
Binomial Regression Data

Consider regression data (n;, N;, xi), k = 1,..., N, where
the n;’s represent the number of successes from independent
binomial distributions, Binomial(N;, ¢x), the x;’s are known
p x 1 vectors of covariates, and the index k denotes covariate
patterns. Due to the action of some corrupting mechanism,
the response variable is often classified incorrectly. To accom-
modate this misclassified response, we conceptually split the
data-collecting process into two stages: an unobserved sam-
pling stage related to the true response R” followed by a re-
porting stage where an observed and possibly wrong response
R is reported.

If we associate a success with R=1 and write 0; =
P(R"=i|xy), k=1,...,N, i=0,1, with > 6;=1 and
M= P(R°=j|R" =4, x3), k=1,...,N, i, j = 0, 1, with
Zj Arij =1, then the probability of success for the ob-
served response of an individual with covariates xj is ¢ =
Zi Aki10k;. The probability model for the observed regres-
sion data, n=(ng, N), is described by the nonidentifiable
product-binomial likelihood

N N ng Ni—ng
L(0,X|n) = H (n;f) Z Aki1Oki Z AkioOri )
k=1 i i

(1)
where @ and X stand for the sets of parameters 0y, and A,
respectively. Note that both kinds of parameters may depend
on the covariates. When the covariate dependence of A is al-
lowed, this means that a differential misclassification mecha-
nism is being adopted. A standard method of analyzing the
association between a response variable and several covariates
is using generalized linear models. In this case, we can express
the expected value of the success proportions as a function of
a linear predictor
Nk
E (E
where 3 is an unknown p x 1 vector of regression coefficients
and ¢(-) can be an arbitrary c.d.f. Common choices for g in-
clude the logistic, normal, and Gumbel (for minima) distri-
bution functions, defined by

e) = O = 6, (x,8) = g (x},8),

e¥B /(14 eX'P)
2(x'B) ()
1 — exp(—e¥P).

g(x'B) =

Henceforth, we will always assume that, a priori, the dis-
tinct quantities @ and A are independent, motivated by the oc-
currence of misclassification being inherent to the clinical pro-
cedure regardless of 8. Moreover, the inclusion of any form of
dependence between these parameters would make the anal-
ysis more difficult, without any obvious practical benefit.

3. Subjective Prior Distribution

In a subjective Bayesian analysis, the introduction of further
regression parameters leads to a potentially serious problem.
Because these parameters do not relate directly to the data,
they can look rather esoteric to the practitioner’s eyes. This is
particularly true when competing choices of the link function,
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g~ 1(-), must be considered, each one with a different interpre-
tation of 3. In practice, this can be a subtle, but nevertheless
powerful inducement for using convenience priors and, some-
times, to skip altogether the expert prior elicitation step and
stick to noninformative or diffuse prior distributions. A recent
example of this approach can be seen in Rekaya et al. (2001);
they use hierarchical priors of convenience in problems of this
type, but with a simplified misclassification structure.

Bedrick et al. (1996) considered this problem of generalized
linear models and proposed a method of overcoming it using
a so-called conditional means prior (CMP). In brief, a CMP
is obtained as follows:

1. Choose p covariate vectors X;, Il = 1,...,p;

2. Assign a prior on {61(X8),...,0(X,8)};

3. Obtain the induced prior on B by using the change-of-
variables method.

The choice of the p covariate vectors X; should also be sub-
jected to expert opinion and be made so that those vectors
are widely spaced in the predictor space in order to make
it reasonable to assume prior independence of the quantities
61(x;3). On this subject, we refer the reader to Bedrick et al.
(1996) for general guidelines and diagnostic measures for the
choice of the %X;’s, and to Bedrick, Christensen, and Johnson
(1997) for an illustration.

In the following, we will abandon some of the previous
generality and focus on a particular case that will be im-
portant in the applications. This is when one specifies that,
independently, 0;(%X}3) ~ Beta(c;,d;), | = 1,...,p, and that
g(+) is a continuous c.d.f. F(-) with density f(-). Denoting
0y(x;8) = 1 — 6,(x]8), the induced prior on B is

P
=(B) < [[ {08} {0xiB8)}"  FXiB). (3)
=1
To illustrate a simple logistic regression model, the Jaco-
bian of the transformation {6;(x)3),6:1(X,8)} — B= (B, 51),
where X} = (1 =), is (z9 — 1) Hle 61(%x;3)0y(x;8) and hence
(3) is 7(8) = (2 —21) [, {01 (KB} {00(%,8) }0/Bcr, )
The hyperparameters ¢; and d; are determined (indirectly
in general) from expert prior judgments on features of the
prior distribution for {6;(%X]}3)}. An analogous process is used
to obtain the (possibly beta) prior hyperparameters for A.
Comparing this prior with the likelihood L£(8,A|n) =
L{0(B),A|n}, we see that the presence of a misclassified
response, along with the probabilistic model described in
Section 2 to explain that misclassification, leads to a com-
plicated posterior kernel that makes impossible any straight-
forward inferences using analytical methods. We will see in
the next section how the use of data augmentation can allevi-
ate this problem by separating the parameters 3 and A in the
likelihood.

4. Data Augmentation

Let my; be the number of observations with RT =i and
RO = j among those observations with a covariate pattern x;.
For these unobserved quantities, we have my,; = ZZ Myl =
ng, and mgo = N — ng, while any other partial sum is also
unobserved. The augmented data m = (my;) is an hypo-
thetical sample from a product of multinomial distributions



672

MA{Ny, (M\y;0O%:)} with a corresponding likelihood under the
generalized linear model parameterization,

L(B,A|m) x H {0:(x,,B8)} i H )\ZZWJ

ki kyi,3

This likelihood shows that a data augmentation approach can
serve our inferential purposes, in the sense that it leads to a
factorization £ (8,A | m)=L(8|m) x L£(A|m) that, in a
sense, conjugates nicely with the induced prior for 3 in expres-
sion (3). In fact, the augmented data posterior distribution is

7(B, A | m) o (8 | m)m(A) [ AT, (4)

ki3

where () is a prior distribution for A and

(B m) < [[{Ox8)} " {0} F(xiB)

=1

x [ {6:(x8)3 . (5)
ki

For the reporting stage parameters A, it may be generally
reasonable to assume prior independence among the sets
{Akij» 3 =0,1},Vk, 4, and to use a beta distribution for each.
In this case, their posterior distribution given m is a prod-
uct of beta distributions with their hyperparameters updated
by m.

Conditionally on the observed data, the augmented data is
distributed according to independent binomial distributions
for each k

!
mio1 | B, A, ~ Binomial{nk7 M}

Zi Akir0; (Xlk,@)

k106 (X
Mi1o | B, A, ~ Bimomial{Nﬂc -n k106 (,,8) } .

oy e 7L AR
’ Zl Akiod; (Xﬁcﬁ)

(6)

From this setup, it seems now possible to draw inferences

based on a data augmentation algorithm (see Tanner, 1996),

such as the chained data augmentation algorithm (CDA).

This algorithm can be viewed as a Gibbs sampler and is
formed by the following steps:

(1) Choose adequate initial values 3° and A’
(2) Fori=1,...,t:

(a) Imputation step

(i) sample m‘ from the independent binomial distri-
butions in (6) given 871, A", and n;

(b) Posterior step

(i) sample A’ from the independent beta distribu-
tions given m?;
(ii) sample B¢ from 7(B|m) in (5) given m®.

Then, under general conditions, m(3, A| m*) will converge to
m( B, A | n) as i goes to infinity (Tanner and Wong, 1987).
The remaining problematic issue is to sample from 7 (3 | m)
in step (2)(b)(ii). A possible solution is to resort to the
sampling-importance resampling (SIR) method as described
by Gelman et al. (1995). For the importance distribution,
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Table 1
The HPYV infection data
X}; Ny Nk
(0,0,0) 12 44
(0,0,1) 1 2
(0,1,0) 29 40
(0,1,1) 3 3
(1,0,0) 6 9
(1,1,0) 1 4
(1,1,1) 2 2

we found it adequate to use a multivariate student t-density
with v degrees of freedom, with a mode equal to the mode of
(B |m?) and dispersion proportional to the asymptotic co-
variance matrix evaluated at the mode. The value of v should
ensure that the tails of the importance distribution decay
slower than those of the target distribution 7( 8 | m?).

5. The HPV Data

We will now analyze the problem described in Section 1.
Writing x*=(VW, NSP, HS), the collected data is pre-
sented in Table 1 and a brief descriptive analysis is given
in Figure 1, where we can see that, for example, 54 women
were diagnosed as infected by the HPV during the study,
while 50 others maintained a negative result in the clinical
tests.

Following Bedrick et al. (1997), we carried out the prior
elicitation with the kind collaboration of Dr Anna-Barbara
Moscicki from the Department of Pediatrics at UCSF. Since
we have three binary covariates, we needed to choose four
covariate configurations to induce the prior on 3. So, Dr
Moscicki was asked to choose those four configurations and
to provide values for the 1%, 50%, and 99% quantiles of her
prior density for the probability of HPV infection of some-
one with those covariate characteristics. This is a purposeful
overspecification of the beta distributions, so we used the two
quantiles on which the expert was more confident, 50% and
99%, to calculate the prior hyperparameters, and the third
one to assess the consistency of the choice. This process was
iterated until a consistent set of values was found and then
the hyperparameters were obtained numerically.

100% ~
Negative
O, m
80% 50 55
60% -
’ 89 o7
40% -
20% -
0% -
HPVS VW NSP HS
Figure 1. Brief descriptive analysis of the HPV data.
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Table 2
Ezxpert elicitation of prior quantiles for @ and A

Q1% Gso%  Gesv, ~ Hyperparameters
% =(1,1,1) 0.30 0.70 0.95 5.944 2.731
%, = (1,0,0) 0.09 0.30 0.60 4.692 10.512
x3 = (0,1,0) 0.15 0.40 0.70 5.897 8.682
x4 =(0,0,1) 0.14 0.30 0.50 10.142 23.224
P(false positive)  0.02 0.05 0.10 8.386 153.386
P(false negative) 0.03 0.07 0.20 3.135 37.650

Regarding the misclassification probabilities, it is quite rea-
sonable to argue that the presence of misclassification is not
related to the covariates and, consequently, a nondifferential
misclassification mechanism can be used. This means that we
only have to deal with two parameters: P(false positive) =
1-specificity = A\g; and P(false negative) = 1-sensitivity = Ajp.
The elicitation of the prior hyperparameters for these two mis-
classification probabilities followed the lines described above.
Assessments of the sensitivity and specificity of the HPV di-
agnostic using known samples (Moscicki et al., 2001) formed
the basis of Dr Moscicki’s prior opinion about misclassifica-
tion rates. The complete set of elicited quantiles is given in
Table 2.

In this article, we will restrict the analysis to three common
generalized linear models, the logistic (M), probit (M), and
complementary log-log models (Mj3;), for which the c.d.f. is
defined by the function g in (2) where x'3 = 8y + /1VW +
B2NSP + (;HS.

A preliminary simulation study of the importance-sampling
weights showed that the degrees of freedom of the importance
distribution, v, need not be very small and that a value of
30 would be fine for all three models in terms of the usual
requirement of a small variability for the importance weights.
We believe that this is due to the light tails of the posterior of
B, since we found that the posterior results were only mildly
affected by the variation of the importance-sampling degrees
of freedom.

To select the most appropriate model for the data, we com-
puted Bayes factors to compare M; and M;, BF;; = P(n|M;)/
P(n|M;), where P(n|M;) is the marginal probability of ob-
serving the data n from model M;, that is,

P<n|Mi>:/ci (B, A | n)7 (8,7) dBdA,

P(false positive)
20 !
15

10
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where £; (8, | n) is the likelihood for the model M;. That
marginal probability can be estimated by sampling from the
prior distribution 7(3, A) of Sections 3 and 4, and then eval-
uating

t
1
P | M)~ > L8N [ n).
=1

To sample from the marginal prior of 3, it is sufficient to
sample from the prior distributions of 6;(X;3), | = 1,...,4,
and then solve the set of equations {6, = g(X}3)} to obtain
samples from 3.

To obtain sufficiently stable estimates, it was neces-
sary to use t=107, from which the values obtained were
BF», =1.0058, BFy; =1.0015, and BF;3 = 1.0073. These val-
ues are all close to 1 so if the prior odds for any pair of models
are equal to 1, then they are practically unaltered by the data.
Therefore, this criterion for model selection does not provide
enough evidence for choosing any particular one. This be-
ing so, the following results were computed from a sample
of 100,000 points obtained with the logistic model, after a
proper convergence analysis using the methods available in
the CODA (Best, Cowles, and Vines, 1997) or BOA (Smith,
2001) software.

Figures 2 and 3 display the plots of the prior (dashed lines)
and posterior densities (solid lines) for Ay, Aig, and 6, (x;8),
l=1,...,4, where the posteriors are drawn as smoothed his-
tograms. These figures show that there is no conflict between
the prior information and the data, and that the expert’s opin-
ion about the misclassification probabilities was very precise;
this is particularly true in the false positive case, in the sense
that there are no significant differences between the respec-
tive prior and posterior densities. In this regard, we should
add that a further simulation study (based on uniform priors
for A¢; and Ajg) showed that the data can strongly affect the
estimation of the probabilities of a false positive and a false
negative (and of @ as well). Furthermore, point and interval
summaries of the posterior distribution of the misclassification
probabilities were found to be rather insensitive to changes in
0’s prior distribution strength.

Other posterior estimates are shown in Table 3. The high-
est priority density (HPD) credible intervals were obtained
with Chen and Shao’s method (described in Chen, Shao, and
Ibrahim (2000)). Those estimates show that NSP is the co-
variate with the strongest association with HPV infection.

P(false negative)

0.025 0.05 0.075 0.1 0.125 0.15 0.175

Figure 2.

025 0.3

Prior and posterior distributions for A (the dashed lines are for the priors and the solid ones for the posteriors).
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Figure 3. Prior and posterior distributions for 6(x}3) (the dashed lines are for the priors and the solid ones for the
posteriors).

This result supports the hypothesis that HPV is a sexually
transmitted virus and that most new infections are due to
exposure rather than to the development of latent infections.

All the computations were made with specially written OX
or Mathematica code that is available from the authors upon
request.

6. Concluding Remarks

The presented approach extends the work of Bedrick et
al. (1996) to accommodate the observation of binomial re-
gression data with misclassification on the response. In
Section 5, the described illustration misses an important
point—there are no continuous covariates. However, by con-
struction, this approach does not depend on the covariate na-
ture and so it is immediately applicable to the general case.
Naturally, the larger the number of covariates, the more ex-
tensive the eliciting work will be and the more complex it

is to assure the prior independence between the 6,(%]8)’s.
Despite the undeniable advantages of the Bayesian operation
on drawing inferences in settings like this, model nonidenti-
fiability requires special care in the prior elicitation process
because, as is well known, the posterior inferences of non-
identifiable parameters are strongly influenced by the prior,
even for increasingly large sample sizes. Another simple ex-
tension would be the consideration of polychotomous response
data.

On the negative side, the use of the SIR method within the
chained data augmentation algorithm is currently a weakness
of this approach. Since there is no way to completely ensure
the “quality” of the SIR results, alternatives, such as advanced
importance sampling, slice sampling, or even perfect sampling
(see Liu (2001)), are badly needed. Ongoing preliminary work
has already allowed us to validate the SIR results using a much
faster slice sampling algorithm.

Some posterior estimates for the HPV data

Table 3

Mean MC error S.d. Median HPD CI (95%)
P(false positive) 0.0568 0.0001 0.0188 0.0549 0.0228 0.0941
P(false negative) 0.0586 0.0001 0.0311 0.0535 0.0082 0.1202
Intercept —1.0215 0.0013 0.3321 —-1.0108 —-1.6715 —0.3786
VW 0.3861 0.0016 0.4579 0.3824 —0.5071 1.2803
NSP 1.5506 0.0014 0.3933 1.5452 0.7732 2.3059
HS 0.3028 0.0014 0.4230 0.3017  —0.5249 1.1233
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RESUME

Motivés par ’étude de infection a virus papilloma humain
chez la femme, nous présentons une analyse de régression bi-
nomiale bayésienne dans laquelle la réponse est sujette & un
processus d’erreur de classement sans contrainte. Notre ap-
proche itérative fournit des inférences pour les parametres
qui décrivent la relation des covariables avec la réponse, et
pour les probabilités d’erreur de classement. De plus, notre ap-
proche s’applique a n’importe quel modele linéaire généralisé
pertinent, rendant possible la sélection de modele, et il est
immédiat de I’étendre & un contexte multinomial.
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